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What is Pac-Man?
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• Pac-Man is an arcade video game released by 
Konami in 1980.

• It yielded the second highest cross revenue of 
all arcade games (approx. 7.27 billion dollar).

• Pac-Man is the best known video character 
among American customers [source].
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Pac-Man’s Goals
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• Pac-Man‘s task is to traverse a maze and eat all the pills.

• Four ghosts will hunt and try to stop him.

• Eating one of the our power pills will allow Pac-Man to eat
ghosts for a short duration.

• Each of those actions scores Pac-Man points.

• After all pills were eaten, the next level starts.

• The game ends when no continues remain, after Pac-Man 
was eaten by a ghost.
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Mrs. Pac-Man vs. Ghost Team Competition
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• Since 2007 the Mrs. Pac-Man vs. Ghost Team Competitions.

• This work is part of this years competition, which features partial observation.

• The competition allows to program agents for Mrs. Pac-Man and the Ghost Team.

• In contrast to previous installments, agents will only receive information about
objects in line of sight or general information about the map.



Related Work

• Previous Competition installments included agents based on:

– State Machines [Gallagher and Ryan]

– MCTS [Robles, Tong, Nguyen]

– Neural Networks [Gallagher and Ledwich]

– Ant Colony Algorithms

– Genetic Programming [Alhejali, Brandstetter]

• It is not clear how well those solutions translate to the partial observation
scenario!
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Genetic Programming

• The behavior of each individual is encoded by a tree.

• The tree includes simple control structures using input by the game and
points to an appropriate output.

• Evolutionary Algorithms are used to create a diverse set of trees while
trying to improve the fitness of applied trees over time. 

• Mutation and Crossover operators are used to modify parts of the trees.
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Genetic Programming for Ghost Agents

• Implemented nodes should give access to all capabilities of the API, 
while being as general as possible.

• We differentiate function nodes, data terminal and action terminals.

• Function Nodes: include basic control functions (e.g.    
If…Then…Else…-nodes), and Boolean or Numeric operators

• Data Terminals: queries the API and the internal memory

• Action Terminals: perform a basic action, which is provided by the API
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Mrs. Pac-Man Data and Action Terminals

Data Terminals:
• IsPowerPillStillAvailable
• AmICloseToPower
• AmIEmpowered
• IsGhostClose
• SeeingGhost
• DistanceToGhostNr<1,2,3,4>
• EmpoweredTime

Action Terminals:
• FromClosestGhost
• ToClosestEdibleGhost
• ToClosestPowerPill
• ToClosestPill
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This approach was adapted by previous competition submissions!

Due to partial observation restrictions we extended most Data Terminals with a 
short term memory:
• Remembers the last seen position of a ghost
• and simulates its behavior for a few ticks
• after a tick threshold is reached, the memory is cleared



Evaluation in a Partial Observation Scenario

• We first validated if the Genetic Programming works with partial observation.
• A ghost team of simple state machine agents were used as contrahent for

evolved Pac-Man agents.
• The average performance as well as the performance of the best Pac-Man 

improved only slightly over time.
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Ghost Team Data and Action Terminals

Data Terminals:

• SeeingPacMan

• IsPacManClose

• IsPacManCloseToPower

• IsEdible

• IsPowerPillStillAvailable

• DistanceToOtherGhosts

• EstimatedDistance

Action Terminals:

• ToPacMan

• FromPacMan

• FromClosestPowerPill

• ToClosestPowerPill

• Split

• Group

Slide 11/20, 23.08.2017Alexander Dockhorn



Evaluating Genetic Programming for Ghost Teams
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• Two Pac-Man agents were used as contrahents for evolved ghost teams.
• SimpleAI = state machine agent
• MCTSAI = Monte Carlo Tree Search agent

• Two approaches were compared:
• uniform: 

• Ghost tTeams are made of four instances of the same individual 
• all individuals share the same population
 single evolution

• diverse: 
• Ghost Teams are made of four instances of different individuals
• each individual is of one from four populations
 cooperative coevolution



Single Evolution vs. Cooperative Coevolution
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Genetic Programming Summary

• Agents for both agent parties can be learned using genetic
programming.

• However, we need a suitable contrahent to assist the generation of
complex behavior.

• Contrahents need to be hand-coded in the current framework.

 Time consuming

 Can miss possible strategies

 Can be limited in the play-strength

• How can we combine both genetic programming procedures to get
suitable Pac-Man agents AND Ghost Team agents?
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Combined Coevolution Framework

• Mrs. Pac-Man agents have
one population
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• Ghosts are split into 4 populations

• Each population exhibits its own
strategy

• The best individuals per population
will survive



Combined Coevolution Framework
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• The general idea:

 When one agent type becomes stronger, their opponents need to react

• From our evaluation we can see bumps in Pac-Mans fitness values, which
degrade over time

– Those correspond to faster strategy changes in the beginning

– And higher complexity in the end of the evolutionary process



Combined Coevolution Framework
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• We repeated the learning process 10 times to get insights in the general
behavior of this learning process

– Average points of Pac-Man and the Ghost Team converge over time

– Best individuals per population quickly foster new strategies in the
next generations

– Overall complexity increases very slowly



Insights
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• The combined genetic programming reaches
the same levels of complexity compared to
single evolutionary processes.

– …, but is increadible slow in doing so.

• Why does the complexity increase so slow?

– Due to the scoring of the game, few basic
strategies have a high return

– This cycle dominates the first generations

• Open Question:

– How can we promote complexity?

Favor Pills

Chase 

Pac-Man

Eat Ghosts

Defend
Power-Pills



Conclusions
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• Genetic Programming proved to be capable of generating simple and
complex behavior in agents.

• Using four diverse ghost controllers was better and converged faster than
using only one kind of ghosts

– Either it is generally better to have mixed ghost teams

– … or individuals from the single population need more time to built up
comparable complexity

• Combining both genetic programming procedures potentially removes the
need of creating suitable opponents.



Limitations and Open Research Questions
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• Strategy loops hinder the combined framework in creating more
complex strategies

– Can those loops be detected during the evolutionary process?

– Can we promote more complex solutions?

• Local maximas hinder the process

– Exchange game induced scoring

– Use a dynamic scoring function, which takes current strategies
into account?

• How can other agent types be included, e.g. learning a multi-
objective MCTS score function?
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Check on Updates on our project at: 
http://fuzzy.cs.ovgu.de/wiki/pmwiki.php/Mitarbeiter/Dockhorn

(Download of our project files will be made available soon)

http://fuzzy.cs.ovgu.de/wiki/pmwiki.php/Mitarbeiter/Dockhorn

